If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x^2=320
We move all terms to the left:
2x^2+x^2-(320)=0
We add all the numbers together, and all the variables
3x^2-320=0
a = 3; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·3·(-320)
Δ = 3840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3840}=\sqrt{256*15}=\sqrt{256}*\sqrt{15}=16\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{15}}{2*3}=\frac{0-16\sqrt{15}}{6} =-\frac{16\sqrt{15}}{6} =-\frac{8\sqrt{15}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{15}}{2*3}=\frac{0+16\sqrt{15}}{6} =\frac{16\sqrt{15}}{6} =\frac{8\sqrt{15}}{3} $
| Z2+18z+17=0 | | -6c=1-6c | | -u+229=99 | | 0.5^x+0.7^x=1 | | 251=-y+138 | | 251=-y | | 4.5q-5.9-5.79q=-2.2q-2.6 | | Y=x*x+7x+14 | | ?x(8+6)=42 | | Y=xXx+7x+14 | | Y=x2+7x+14 | | (v+6)(v-7)=0 | | 3x+2x+7=10x=-16 | | 4-a=4a+12 | | 9x+1/49=x+5/14 | | 10w+3=4w-9 | | 90=x+(3x-6) | | –50=–10+8h | | 350n=500 | | 14nX25=500 | | 1/2y-6=3 | | h(2)-11=6-2 | | 3x-5=7||-5 | | h(1/2)=2(1/2)+3(1/2)-5 | | 1/20=1/u+1/2.5u | | 5(2d-3)=45 | | q(.4q-6)=0 | | q(.4-6)=0 | | 7x-2-5x-10-4x=180 | | 9h+6=8h+13 | | 7x-4.2=x+22 | | 7x-(x-15)=2x-(1+x) |